

NETL Life Cycle Inventory Data Process Documentation File

Reference Flow: 1 Brief Description: T		Combustion of Kerosene								
		1 kg of Kerosene								
		This unit process includes the emissions associated with the combustion of kerosene								
	Section I: Meta Data									
	Geographical Covera	age:	United States		Region: N/A					
Year Data Best Represents:		2012								
Process Type: Process Scope:		Energy Conversion (EC)								
		Gate-to-Gate Process (GG)								
Allocation Applied:			No							
Completeness:		All Relevant Flows Captured								
	Flows Aggregated in	n Data Se	et:							
	✓ Process	☐ Energ	y Use	□ Ene	ergy P&D	☐ Material P&D				
Relevant Output Flows Included in Data Set:										
	Releases to Air:	Releases to Air: Greenhouse Gases Releases to Water: Inorganic Water Usage: Water Consumption		☑ Cri	teria Air	✓ Other				
	Releases to Water:			□Org	ganic Emissions	☐ Other				
	Water Usage:			□ Wa	☐ Water Demand (throughput)					
	Releases to Soil: Inorganic Releas		anic Releases	□Org	ganic Releases	☐ Other				
	Adjustable Process I	Paramet	ers:							
CH4 CO CO2			[kg/kg kerosene] Methane emissions per kg of combusted kerosene							
					[kg/kg kerosene] Carbon monoxide emissions per kg of combusted kerosene					
					[kg/kg kerosene] emissions per kg	Carbon dioxide of combusted kerosene				
	HONO				[kg/kg kerosene]	Nitrous acid emissions				

per kg of combusted kerosene

NETL Life Cycle Inventory Data - Process Documentation File

N2O	[kg/kg kerosene] Nitrous oxide emissions per kg of combusted kerosene
NH3	[kg/kg kerosene] Ammonia emissions per kg of combusted kerosene
NO	[kg/kg kerosene] Nitrogen Oxide emissions per kg of combusted kerosene
NO2	[kg/kg kerosene] Nitrogen dioxide emissions per kg of combusted kerosene
NOX	[kg/kg kerosene] Nitrogen oxides emissions per kg of combusted kerosene
PM10_Great	[kg/kg kerosene] Particulate matter greater than 10 microns emissions per kg of combusted kerosene
PM2.5_PM10	[kg/kg kerosene] Particulate matter between 2.5 and 10 microns emissions per kg of combusted kerosene
BC	[kg/kg kerosene] Black carbon less than 2.5 microns emissions per kg of combusted kerosene
OC	[kg/kg kerosene] Organic carbon less than 2.5 microns emissions per kg of combusted kerosene
SO2	[kg/kg kerosene] Sulfur dioxide emissions per kg of combusted kerosene
SOX	[kg/kg kerosene] Sulfur oxides emissions per kg of combusted kerosene
TOC	[kg/kg kerosene] Total organic carbon emissions per kg of combusted kerosene
VOC	[kg/kg kerosene] Volatile organic compound emissions per kg of combusted kerosene

Tracked Input Flows:

Kerosene [Technosphere] Kerosene for combustion

Section II: Process Description

Associated Documentation

This unit process is composed of this document and the data sheet (DS) Stage3_Kerosene_Combustion.01.xlsx, which provides additional details regarding relevant calculations, data quality, and references.

Goal and Scope

This unit process provides a summary of relevant input and output flows associated with the combustion of kerosene utilized for several downstream processes. The reference flow of this unit process is: 1 kg of Kerosene.

Boundary and Description

This unit process provides a summary of relevant input and output flows associated with the combustion of gasoline. There are several grouping scenarios that represent the type of engine, sector, and control. The electric generation or electric power sector includes the combustion of kerosene in a reciprocating or turbine engine for electricity only or combined heat and power (CHP) (EPA, 2014). The industrial sector includes the combustion of kerosene in a reciprocating or turbine engine for producing, processing, or assembling goods; i.e. manufacturing and mining (EPA, 2014). The aircraft scenario in this process consists of either freight or passenger (Elowainy *et al., 2012*). Nongreenhouse gas (GHG) emissions for electric generation, industrial, and commercial scenarios were taken from the U.S. EPA's (United States Environmental Protection Agency) WebFIRE database (EPA, 2012), while GHG emissions for these scenarios were derived from EPA's 2011 GHG Emission Factors Hub (EPA, 2011). All aircraft scenario emissions were derived from Argonne National Laboratory's *Life-Cycle Analysis of Alternative Aviation Fuels in GREET* (Elgowainy *et al., 2*012).

Combustion of Kerosene: System Boundary

This unit process includes the emissions associated with the combustion of kerosene

Key
Process
Upstream Emissions Data

Figure 1: Unit Process Scope and Boundary

Table 1: Unit Process Input and Output Flows - Aircraft, Passenger

Flow Name	Value	Units (Per Reference Flow)
Inputs		
Energy (Kerosene) [Fuels]	1.00	kg
Outputs		
Jet/Kero Combustion, Aircraft, Passenger [Refinery Product]	1.00E+00	kg
Methane [Organic emissions to air]	5.34E-06	kg
Carbon monoxide [Inorganic emissions to air]	5.06E-03	kg
Carbon dioxide [Inorganic emissions to air]	4.14E-01	kg
Nitrous acid [Inorganic emissions to air]	1.83E-04	kg
Nitrous oxide (laughing gas) [Inorganic emissions to air]	6.76E-05	kg
Ammonia [Inorganic emissions to air]	0.00E+00	kg
Nitrogen monoxide [Inorganic emissions to air]	1.30E-02	kg
Nitrogen dioxide [Inorganic emissions to air]	1.35E-03	kg
Nitrogen oxides [Inorganic emissions to air]	0.00E+00	kg
Dust (> PM10) [Particles to air]	0.00E+00	kg
Dust (PM2,5 - PM10) [Particles to air]	0.00E+00	kg
Dust (PM2.5) [Particles to air]	1.90E-04	kg
Black carbon [Particles to air]	2.47E-05	kg
Organic carbon [Other emissions to air]	1.19E-04	kg
Sulphur dioxide [Inorganic emissions to air]	0.00E+00	kg
Sulphur oxide [Inorganic emissions to air]	3.71E-04	kg
TOC, Total Organic Carbon [unspecified]	0.00E+00	kg
NMVOC (unspecified) [Group NMVOC to air]	5.66E-04	kg

^{*} **Bold face** clarifies that the value shown *does not* include upstream environmental flows.

Embedded Unit Processes

None.

References

EPA (2014)	U.S. Energy Information Administration (2014). Definitions of EIA Distillate Categories and Fuels Contained in the Distillate Grouping. EIA.	
	Washington, DC.	
	http://www.eia.gov/dnav/pet/tbldefs/pet_cons _821dsta_tbldef2.asp. Last Accessed: March	
	25, 2014	
Elowainy <i>et al.</i> (2012)	A. Elgowainy, J. Han, M. Wang, N. Carter, R.	

Stratton, J. Hileman, A. Malwitz, and S.

Balasubramanian (2012). Life-Cycle Analysis of

NETL Life Cycle Inventory Data – Process Documentation File

EPA (2012)

Alternative Aviation Fuels in GREET. Argonne National Laboratory. Lemont, IL. U.S. Environmental Protection Agency (2012). WebFIRE. EPA. Washington, DC. http://cfpub.epa.gov/webfire/ Last Accessed: March 23, 2014

NETL Life Cycle Inventory Data – Process Documentation File

Section III: Document Control Information

Date Created: March 27, 2014

Point of Contact: Timothy Skone (NETL), Timothy.Skone@NETL.DOE.GOV

Revision History:

Original/no revisions

How to Cite This Document: This document should be cited as:

NETL (2014). NETL Life Cycle Inventory Data – Unit Process: Combustion of Kerosene. U.S. Department of Energy, National Energy Technology Laboratory. Last

Updated: March 2014 (version 01). www.netl.doe.gov/LCA

Section IV: Disclaimer

Neither the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) nor any person acting on behalf of these organizations:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe on privately owned rights; or
- B. Assumes any liability with this report as to its use, or damages resulting from the use of any information, apparatus, method, or process disclosed in this document.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by NETL. The views and opinions of the authors expressed herein do not necessarily state or reflect those of NETL.